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5. Goodness of Fit

Posterior Predictive Checking: (Gelman et ai, 2004)

1. Introduction 4. Overdispersed Spatial

Count Model

Fire plays an important role in Canada’s forested ecosystems.

It helps to maintain forest health and diversity; however, it can

e J=4000 replicated data sets, N generated from posterior

Nz’ ‘ )\2’7 a ~~ Negbm()\z, CL) 1 = 1, e /

have undesirable negative effects on public safety, health and

predictive distribution

property. Forest fire has numerous causes such as dl”y weather where NV; is the total fire count in region ¢, A\; describes the mean and a > 0 is the dispersion

e Posterior Predictive P-value is defined as
Pp = Pr(T(N", 0) > T(N,0) | N)

where T(.) is a test quantity that is a scalar summary of pa-

and human behavior. Moreover, large areas of dead forest due parameter (¢ — 0 yields the Poisson(A;)) (Lawless, 1987).

to mountain pine beetle outbreak in British Columbia may lead

to more severe wildfires. Therefore, it is important to study the Under a Bayesian hierarchical framework, we can use an equiv-

alent Poisson-Gamma mixture representation:
N; | v;, \j ~ Poisson(v;\;) argost fire counts

log(\) = BTX; + b, - L rFa=-os7so

b = (by,...,b,) are spatial random effects, b | o7, ~ CAR(o7)

1
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distribution of forest fire and its relationship to these factors. rameters and data

Extremes:

I' = the largest value
of fire counts in each
data set

2. Data Structure

Study Area: British Columbia (divided into I = 1712 homoge-
neous grid cells)

i.i.d . .
v; | a ~ Gamma(+, a) accommodate extra Poisson variation

where 3 is a vector of regression coefficients and X, is a vector of covariates for region 7. The
Nnumber of fire count = O
P_,=0.003

conditional autoregressive model (CAR) (Besag, 1974) employed for b accounts the spatial
Heavy Zeros:

T =L [(N'" =)

tJ
[(.) is the indication function

effect of region ¢ conditionally on its neighboring regions based on the adjacency matrix W.
Response: V;, total fire counts in each region over 44 years

Covariates (regional specific): area affected by mountain pine [dentifiability: Note the random effects b; and v; are not uniquely
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beetle (MPB) outbreak, area of forest covering, area of pine lead- identified; however the sum «; = b; + log(y;) is identified. In

ing stands, number of roadways and drought climate order to deal with the weak identifiability issue among v; and b;;,

mean/variance
F)

= =0.3875 |

Spatial Information: an adjacency matrix W, coding adjacencies we monitor «; instead.

Overdispersion:

mean(N;™)
variance(IN’;™)

of partitioning grid cells

Model estimation of & = (3, cv, a, 0;) given the data is carried

out using a Markov Chain Monte Carlo Algorithms programed B D O S B e
in Matlab.

Comment: No evidence of lack of fit for extremes and overdis-

3. Exploratory Analysis

persion aspects; however, not adequately detail with zeros.

Posterior Summaries (NegBin with CAR)

Figure 3: Covariates

Figure 1: Total Fire Counts Figure 2: MPB Outbreak
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(larger circle indicates a higher value)

. o [igure 4: deviance of residuals under

the standard log-linear Poisson regression

. model — not randomly distributed — data
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Comment: The Negative Binomial model with spatial random

e Lawless, F. J. (1987). Negative binomial and mixed poisson regression. The Canadian Journal of Statistics
15, 209-225.

e Research supported by grants from NSERC and GEOIDE.

are spatially correlated

| effects 1s preferred since this model has the smallest DIC.
e Overdispersed count data (Alexander et al, 2000




